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1. Introduction 

Linearized dynamic stochastic general equilibrium (DSGE) models with a unique non-explosive 

solution are the workhorses of modern quantitative macroeconomics (e.g., King and Rebelo, 

1999; Kollmann et al., 2011a,b).This paper shows that multiple stationary equilibria may exist in 

standard non-linear DSGE models, even when the linearized versions of those models have a 

unique solution. Thus, the non-linear models can exhibit stationary fluctuations of endogenous 

variables, even if there are no shocks to productivity, preferences or other ‘fundamentals’. The 

Blanchard and Kahn (1980) conditions for the uniqueness of stable solutions to linear rational 

expectations models are, hence, irrelevant for non-linear models. In the equilibria considered 

here, the economy may temporarily diverge from the steady state, but with some (exogenous) 

probability the economy reverts towards the steady state later. These dynamics are consistent 

with rational expectations. Importantly, the ‘rational bubbles’ studied here are stationary.  

The multiple equilibria identified here have similarities and important differences, 

compared to the rational bubbles in linearized models analyzed by Blanchard (1979) (see also 

Blanchard and Watson (1982)).  Like these paper, the study here focuses on models whose 

linearized versions have a unique non-explosive equilibrium. Like the Blanchard bubbles, the 

rational bubbles in non-linear models discussed here imply that endogenous variables can 

diverge from the steady state, before abruptly reverting towards the steady state.  

The key difference is that the bubbles in non-linear models considered here are 

stationary, while Blanchard’s bubbles in linearized models exhibit explosive expected 

trajectories that tend to  .±∞  This feature greatly limits the appeal of the Blanchard bubbles for 

DSGE models. In standard DSGE models, the numerical accuracy of linear approximations 

deteriorates sharply when the state variables deviate substantially from the point of 

approximation—in particular, non-negativity constraints on endogenous variables and other 

technological feasibility restrictions may be violated. For example, in a standard closed economy 

Real Business Cycle (RBC) model with decreasing returns to capital and capital depreciation, an 

explosive trajectory of the capital stock and output is infeasible. A linear model approximation 

is, thus, not suitable for studying rational bubbles.  

By contrast, the non-linear model analysis here takes non-negativity constraints and 

decreasing returns into account. Decreasing returns and risk aversion generate stabilizing forces 

that prevent explosive trajectories. While rational bubbles in linearized models can be positive or 
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negative, I find that rational bubbles in standard non-linear models are generally one-sided; e.g., 

they tend to predict over-accumulation of capital, but not under-accumulation. I show that 

rational bubbles in non-linear models can induce fluctuations that remain close to deterministic 

steady state most of the time, and the unconditional mean of endogenous variables can thus be 

close to the deterministic steady state. Numerical simulations suggest that non-linear DSGE 

models driven solely by stationary bubbles can generate persistent fluctuations of real activity 

and capture key business cycle stylized facts.  

 A large literature that studied linearized DSGE models with stationary sunspot equilibria 

(i.e. multiple stationary equilibria). These equilibria exist (in linearized models) if the number of 

eigenvalues outside the unit circle is less than the number of non-predetermined variables 

(Blanchard and Kahn (1980), Prop. 3).1 By contrast, the paper here focuses on models for which 

the number of eigenvalues (of the linearized state-space form) equals the number of non-

predetermined variables, so that the linearized structure has a unique non-explosive solution 

(Blanchard and Kahn (1980), Prop. 1). Linearized models may exhibit stationary sunspot 

equilibria if increasing returns or externalities (e.g., Schmitt-Grohé (1997), Benhabib and Farmer 

(1999)), financial frictions (e.g., Martin and Ventura (2018)) or overlapping generations (OLG) 

population structures (e.g., Woodford (1986), Galí (2018)) are assumed. The specific 

assumptions and calibrations that deliver sunspot equilibria in linearized models can be 

debatable.2 By contrast, the paper here shows that very standard DSGE model (without the 

features that were just mentioned) whose linearized versions have a unique stationary solution 

can have multiple equilibria, if non-linear effects are considered.  

Holden (2016a,b) shows that multiple stationary equilibria can emerge when occasionally 

binding constraints (such as borrowing constraints  or non-negativity constraints on endogenous 

variables) are integrated into an otherwise linear model (where that linear model has a unique 

stable solution when the occasionally binding constraints are ignored). By contrast, the analysis 

here considers fully non-linear models: all model equations are non-linear, and all relevant 

occasionally binding constraints are imposed. The model solutions considered here are globally 

accurate (up to machine accuracy). The multiple equilibria describe here have a ‘bubbly’ 

dynamics that differs from the dynamics highlighted by Holden (2016a,b).  
                                                 
1 See Taylor (1977) for an early example of a model with sunspots, due to the presence of ‘too many’ stable roots. 
2 E.g., increasing returns/externalities need to be sufficiently strong, in OLG models the steady state interest rate has 
to be smaller than the trend growth rate (r<g) etc.  



4 
 

The standard DSGE models discussed in this paper are usually presented as structures 

with an optimizing infinitely-lived representative household. The set of optimality conditions of 

that household’s decision problem include a transversality condition (TVC) that stipulates that 

the value of capital has to be zero, at infinity. The TVC (in conjunction with Euler equations and 

static efficiency conditions) implies a unique equilibrium, in standard DSGE models. When 

TVCs do not hold, the economy is ‘dynamically inefficient’ (e.g., Abel et al. (1989)).  

I do not impose the TVC in this paper. My goal is to show that stationary rational bubbles 

can exist in standard non-linear DSGE models. Note that explosive bubbles in linear models 

(Blanchard (1979)) likewise violate the TVC. A possible justification for disregarding the TVC 

is that there is not TVC because agents are finitely-lived. I show that there exists an overlapping 

generations (OLG) structure with finitely-lived households that deliver the same set Euler 

equations and static efficiency conditions as the standard DSGE models discussed here. 

However, the TVC does not apply in that OLG structure. The key features of this OLG structure 

are complete risk sharing among generations (alive in periods t and t+1) and the assumption that 

newborn agents receive a wealth endowment such that consumption by newborns represents a 

time-invariant share of aggregate consumption (under log utility, this requires that the wealth 

endowments of newborns is a time-invariant fraction of aggregate wealth). The linearized 

version of the OLG structure presented here has a unique non-explosive solution, but the non-

linear structure has multiple bubble equilibria. Another motivation for disregarding the TVC is 

that detecting TVC violations may be very difficult in non-linear stochastic economies. 

Households may thus lack the cognitive/computing power to detect deviations from TVC (see 

discussion in Blanchard and Watson (1982), Lansing (2010) and Ascari et al. (2019)).  

The next Section discusses stationary rational bubbles in a one-sector version of the Long 

and Plosser (1983) model, i.e. closed-economy RBC model with log utility and full capital 

depreciation per period. I provide a detailed discussion of that model, as closed form solutions 

with bubbles can be derived for that model. Section 3 considers a more realistic non-linear RBC 

model with incomplete capital depreciation. Section 4 studies stationary rational bubbles in a 

non-linear two-country RBC model. Section 5 analyzes stationary rational bubbles in a non-

linear New-Keynesian DSGE model (nominal rigidities).   
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2. Rational bubbles in the Long-Plosser RBC model 

Following Long and Plosser (1986), this Section considers a closed economy inhabited by a 

household with time-separable life-time utility. The period utility function is logarithmic:  

( ) ln( ),t tu C C=  where tC  is consumption in period t. The production function is Cobb-Douglas:  

                                                               t t tY K αθ= , 0 1α< < ,                                                         (1) 

where , , 0t t tY K θ >  are output, capital and exogenous total factor productivity (TFP). For 

simplicity, I assume that labor hours are constant and normalized at 1 (the next Sections allow 

for variable hours).3 The resource constraint is  

                                                                    ,t t tC I Y+ =                                                                   (2) 

where tI  is gross investment. The capital depreciation rate is 100%, so that gross investment 

equals next period’s capital stock: 1.t tI K +=  The household’s Euler equation is    

                                                        1 1 1( / ) / 1t t t t tE C C Y Kβ α+ + + = ,                                                       (3) 

where 0 1β< <  is the household’s subjective discount factor. Substitution of the resource 

constraint into the Euler equation gives an expectational difference equation in the 

investment/output ratio 1/ :t t tZ K Y+≡  

                                             1 1( , ) [(1 )/(1 )]/ 1.t t t t t t tE H Z Z E Z Z Zαβ+ +≡ − − =                                     (4)          

1t tZ Z αβ+= = solves (4). This corresponds to the textbook solution of the Long-Plosser model (see, 

e.g., Blanchard and Fischer (1989)). Under this solution, consumption and investment are 

constant shares of output: (1 ) ,t tC Yαβ= −  1 .t tK Yαβ+ =   

 

2.1. Bubbles in the linearized Long-Plosser model 

Linearization of (4) around Z αβ=  gives:  

                                             1t t tE z zλ+ = , with t tz Z Z≡ −  and 1/( ) 1.λ αβ≡ >                                  (5)             

λ, the eigenvalue of (5) exceeds unity. The model has one non-predetermined variable ( ).tz  

Thus, the linearized model has a unique non-explosive solution (Blanchard and Kahn (1980), 

Proposition 1). This solution is given by 0tz = , i.e. tZ αβ= t∀ .  

                                                 
3 With endogenous hours, and a period utility function that is additively separable in consumption and hours, hours 
are constant  in the no-bubbles solution of the Long-Plosser model, while hours fluctuate in the bubble equilibrium.  
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Blanchard (1979) pointed out that a linear expectational difference equation of form (5) is 

also solved by a process { }tz  such that   

         1 [ /(1 )]t tz zλ π+ = − ⋅  with probability 1 π−   and 1 0tz + =  with probability π   (0 1).π< <           (6) 

If there is a bubble at date t, i.e. 0,tz ≠  then next period the bubble grows with probability 

1 ;π−  the bubble bursts with probability .π  The larger the bubble, the greater the magnitude of 

the subsequent ‘correction’. The bubble process (6) implies that after a bubble has burst, a new 

bubble never arises again (the bubble is ‘self-ending’). As noted by Blanchard (1979), recurrent 

bubbles obtain if a bursting bubble reverts to a value 0 :μ≠   1 ( )/(1 )t tz zλ μπ π+ = − −  with 

probability 1 π−   and 1tz μ+ =  with probability .π  

An important feature of bubbles in the linearized model (5) is that the expected path of 

the bubbles explodes: lims t t sE z→∞ + =∞  when 0tz >   and lims t t sE z→∞ + =−∞  when 0.tz <  As 

discussed in Sect. 1, this feature greatly limits the appeal of the Blanchard (1979) type bubble. 

Note that, in the Long-Plosser model, the investment/output ratio is bounded by 0 and 1: an 

infinite investment ratio is not feasible. The linear approximation (on which (5) is based) 

neglects this constraint. A linear approximation is thus not suitable for studying rational bubbles.  

 

2.2. Stationary bubbles in the non-linear Long-Plosser model 

I now show that, by contrast to the linearized model, the non-linear Long-Plosser model can 

produce stationary bubbles. Note that (4) holds for any process { }tZ  such that  

                                                      1 1[(1 )/(1 )]/ 1 ,t t t tZ Z Zαβ ε+ +− − = +                                                (7) 

where 1tε +  is a forecast error with zero conditional mean: 1 0.t tE ε + =  1tε +  reflects unanticipated 

changes in 1tZ +  that are driven by changes in households’ expectations about the future path 

1{ } .t s sZ + >  (7) can be written as:  

                                             1 1 1( , ) 1 (1/ 1) /(1 ).t t t t tZ Z Zε αβ ε+ + += Λ ≡ − − +                                         (8) 

1tZ +  is strictly increasing and strictly concave in both tZ  and in 1tε + , for 1 1.tε + >−  The 

strict concavity reflects decreasing returns and risk aversion. Fig.1 plots 1tZ +  as a function of ,tZ  

and that for three values of 1:tε +  1 0tε + =  (thick black line), 1 0.5tε + =  and 1 0.5tε + =−  (thin dashed 
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lines). Throughout this Section, I set α=0.35 and β=0.99, so that =0.3465;αβ  these parameter 

values are standard in quarterly business cycle models.  

 In a deterministic economy, 0tε =  holds ,t∀  and the dynamics of the investment/output 

ratio obeys thus 1 ( ,0)t tZ Z+ =Λ  (see (8)). Fig. 1 shows that the function 1 ( ,0)t tZ Z+ =Λ  cuts the 45-

degree line at two point: 1t tZ αβ+Ζ = =  and 1 1.t tZ +Ζ = =  In a deterministic economy, the slope of 

the mapping from tZ  to 1tZ +  is 1/(αβ), at the steady state Z=αβ.  In a deterministic economy, a 

realization t αβΖ <  puts the investment ratio on a trajectory that reaches Z=0 in finite time; after 

Z=0 has been reached, output and consumption are zero indefinitely. By contrast, a realization 

t αβΖ >  initiates a path that converges asymptotically to Z=1 (without ever reaching Z=1), in a 

deterministic economy.    

 The main contribution of this paper is to show that there exist stationary bubble 

equilibria. These bubble equilibria do not converge to Z=0 or Z=1. Thus, consumption and 

capital are strictly positive in all periods.  In what follows, I focus on these stationary (interior) 

model solutions. When tZ αβ< , then the law of motion (8) implies that the economy can hit a 

zero-capital corner solution in subsequent periods. I thus restrict attention to solutions for which 

{ }Zτ  stays forever in the interval [ ,1).αβ    It is apparent from Fig. 1 that this requires that the 

support of the distribution of 1tε +  has to be bounded from below. (8) implies that when 

[ ,1)tZ αβ∈  holds, then 1 [ ,1)tZ αβ+ ∈  requires 1 1 [ /(1 )] [1/ 1] 1.t tZε αβ αβ+ ≥− + − ⋅ − ≥ −  4  

For simplicity, I assume that 1tε +  only takes two values:  tε−   and /(1 )tε π π⋅ −  with 

exogenous probabilities π  and 1 ,π−  respectively, where [0,1).tε ∈  1tZ +  then takes these two 

values with probabilities π  and 1 :π−   

            1 ( , )L
t t tZ Z ε+ ≡Λ −  and 1 ( , /(1 ))H

t t tZ Z ε π π+ ≡Λ −  with 1 1 1.L H
t tZ Z+ +≤ ≤                              (9) 

In the spirit of Blanchard (1979), I assume that when an investment ‘crash’ occurs in 

period t+1, then the investment/output ratio takes a value that is close the no-bubble 

investment/output ratio, αβ. Specifically, I postulates that 1 ,L
tZ αβ+ = +Δ where 0Δ>  is a small 

                                                 
4 The lower bound of 1tε +  is strictly negative if ,tZ αβ>  and it is strictly decreasing in .tZ   
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positive constant. A strictly positive value of Δ  is needed to generate recurrent bubbles.5  When 

we set 1 ,L
tZ αβ+ = +Δ  the first equation in (9) pins down tε− ; substitution into the second equation 

shown in (9) then determines 1
H
tZ + .  

Alternatively, note that under the assumed bubble process with 1 ,L
tZ αβ+ = +Δ the Euler 

equation (4) can be expressed as  

                                      1( , ) (1 ) ( , ) 1.H
t t tH Z H Z Zπ αβ π ++Δ + − =                                        (10) 

For any [ ,1)tZ αβ∈ +Δ  there exists a unique value 1 [ ,1)H
tZ αβ+ ∈ +Δ  that solves (10).  

 Consider an economy that starts in period t=0, with an initial capital stock 0.K  Let 

{0;1}tu ∈  be an exogenous i.i.d. sunspot that takes values 0 and 1 with probabilities π and 1 ,π−  

respectively. An (interior) bubble equilibrium is a sequence of investment/output ratios 0{ }t tZ ≥  

defined by 0 [ ,1)Z αβ∈ + Δ  and  1 1
L

t tZ Z αβ+ += ≡ +Δ  if 1 0tu + =  and 1 1
H

t tZ Z+ +=  if 1 1,tu + =  for t≥0, 

where 1
H
tZ +  solves (10).   

Note that the investment/output ratio in the initial period, 0Z , does not obey the recursion 

that governs investment ratios in subsequent periods. However, 0 [ ,1)Z αβ∈ + Δ  has to hold to 

ensure that investment/output ratios in all subsequent periods lie in the interval [ ,1).αβ + Δ  

Given a sequence 0{ } ,t tZ ≥  the path of capital 1 0{ }t tK + ≥  can be generated recursively (for the given 

initial capital stock 0K ) using 1 1 ( )t t t tK Z K αθ+ +=  for t≥0.  

I now discuss numerical simulations in which I set 0.01Δ=  and 0.5.π =  Panel (a) of Fig. 

2 plots 1 1,L H
t tZ Z+ +  and 1 1 1(1 ) ,L H

t t t t t tE Z Z Zπ π+ + += + −   as functions of .tZ  Also shown in Panel (a) is the 

value of 1tZ +  that would obtain in a deterministic economy 1( 0) :tε + = 1 ( ,0).t tZ Z+ =Λ  In the 

stochastic bubble equilibrium, the investment/output ratio grows between t and t+1 1( )t tZ Z+ >  

when 1 /(1 ) 0t tε ε π π+ = ⋅ − > ; when 1 ,t tε ε+ =− the investment rate either remains unchanged at 

αβ +Δ  (if )tZ αβ= +Δ , or it drops to 1tZ αβ+ = +Δ  (if ).tZ αβ> +Δ   

                                                 
5 Assume that  0Δ=  (so that 1 )L

tZ αβ+ =  and consider what happens when .tZ αβ=  The first equation shown in (9) 

then becomes ( , )tαβ αβ ε≡Λ −  which implies 0,tε =  so that 1 1 ,H L
t tZ Z αβ+ += = i.e. Z is (forever) stuck at αβ . Setting

0Δ>  rules out that absorbing state. 
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Fig. 2 shows that 1
H
tZ +  is a steeply increasing function of tZ . A sequence of positive 

draws of the forecast error ε  thus generates a run of rapid increases in the investment ratio, that 

is followed by an abrupt contraction in the investment ratio once a negative draw of ε  is 

realized. A sequence of negative forecast errors keeps the investment ratio at the lower bound 

.αβ +Δ  

The strict concavity of the recursion 1 1( , )t t tZ Z ε+ += Λ  with respect to 1tε +  (which reflects 

household risk aversion, as mentioned above)  implies that 1 ( ,0).t t tE Z Z+ <Λ  For any given ,tZ  

the conditional mean of the date t+1 investment ratio 1t tE Z +  is thus strictly below the value of 

1tZ +  that would obtain in a deterministic economy ( ( ,0)).tZΛ   

1t tE Z +  is an increasing and strictly concave function of :tZ  1 ( ),t t tE Z Zζ+ =  ' 0, '' 0.ζ ζ> <  

The graph of 1t tE Z +  intersects the 45-degree line at 0.62.tZ =  Strict concavity of ζ  implies that 

the unconditional mean of the investment/output ratio ( )E Z  is smaller than 0.62 (as 

( ) ( ( )) ( ( )).E Z E Z E Zζ ζ= <  The unconditional mean of the investment ratio is ( ) 0.45.E Z =  While 

in a deterministic economy, the investment-output ratio would rise steadily and converge to 1, if 

a value t αβΖ >  is realized, we see that, with stochastic bubbles, the investment ratio fluctuates 

around a mean value that is close to the stationary no-bubbles investment ratio (αβ). 

A stochastic bubble implies that the absolute value of the forecast error 1tε +  is larger the 

greater .tZ  Thus, the variance of the forecast error 1tε +  is an increasing function of .tZ  Figure 1 

shows that the conditional variance of 1tZ +  is likewise increasing in .tZ  Furthermore, the 

conditional distribution of 1tZ +  is left skewed. The left-skewness is likewise increasing in :tZ  the 

greater the bubble at date t, the bigger the (negative) ‘correction’ if the bubble bursts in t+1.6  

Panel (b) of Fig. 2 shows representative simulated sample paths of output, consumption, 

gross investment (I) and of the investment/output ratio (Z).  In order to assess whether the bubble 

alone can generate a realistic business cycle, I assume that TFP is constant. The Figure shows 

                                                 
6Bacchetta et al. (2012) study a stylized asset pricing model with two-period lived agents in which stationary stock 
price bubbles can arise if the sunspot shock is heteroscedastic. The work here highlights the importance of 
heteroscedasticity, for generating stationary bubbles, in a non-linear DSGE business cycle models. 
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that the model generates massive swings in investment and output. During an expanding bubble, 

the rapid rise in investment is accompanied by a contraction in consumption.  

Table 1 reports moments of HP filtered logged time series generated by the model. Line 1 

of Panel (a) shows moments for specification I, with probability 0.5.tπ =  Predicted moments are 

based on a simulation run of 10000 periods.7 The predicted standard deviation of output is 11.7% 

which is about five times larger than the historical standard deviation of quarterly GDP in 

advanced economies. The model-predicted volatility of consumption and investment too is 

excessive, when compared to the data. The model predicts that output, consumption and 

investment are serially correlated. However, consumption is predicted to be countercyclical, 

which is inconsistent with the data. 

 The model variant above assumes a constant 50% probability that the bubble grows next 

period. The model predicts smaller, more realistic, fluctuations in real activity occur if we 

assume that the probability of growth in the bubble falls once the investment/output ratio exceeds 

a threshold. As an illustration, assume that tπ  is very close to unity, for values of the 

investment/output ratio greater than 0.36.8 This threshold is chosen as it generates (more) 

realistic output volatility. It implies that the investment/output ratio oscillates between these two 

values: 0.3565 and 0.3916 (see below). Note that   the ‘High’ investment ratio exceeds the ‘Low’ 

ratio by about 10%. When the investment/output ratio at date t takes the ‘Low’ value 

0.3565,LZ αβ≡ +Δ=  then next period’s investment ratio is either ‘Low’ ( )LZ  of ‘High’ 

( ( ,0.5) 0.3916)HZ αβ+Δ =  with 50% probability. If the date t investment ratio is ‘High’, then the 

investment ratio falls to the ‘Low’ value in the next period almost surely. Panel (c) of Figure 2 

shows simulated sample paths generated for this model version, and the second Line in Panel (a) 

of Table 1 reports the corresponding model-predicted business cycle statistics.  This model 

variant produces output fluctuations that are more in line with the data (predicted standard 

deviation of GDP: 1.33%), however now output, consumption and investment are negatively 

serially correlated.  

 

                                                 
7 The initial investment/output ratio is set at 0Z αβ= +Δ . Due to stationarity, 0Z does not affect simulated moments 
over a long simulation run. The effect of the initial 0Z on subsequent simulated values vanishes fast.   
8 I set 0.5tπ =  when [ ,0.36]tZ αβ∈ +Δ  and 1001 10tπ

−= −  when 0.36.tZ >  
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2.3. Transversality condition 

Long and Plosser (1983) assume an infinitely-lived representative household. The competitive 

equilibrium of the Long-Plosser economy corresponds to the maximum of the household’s 

decision problem. As that decision problem is a well-behaved concave programming problem, its 

solution is unique. The necessary and sufficient optimality condition of that decision problem are 

the resource constraint (2), the Euler equation (3) and a transversality condition (TVC) that 

requires that the value of the capital stock is zero, at infinity: 1lim '( ) 0.t t tE u C Kτ
τ τ τβ→∞ + + + =  Note 

that, under the assumptions of the Long-Plosser model, 1 1'( ) / /(1 ).t t t t t tu C K K C Z Z+ += = −   When 

tZ αβ=  holds, then 1'( ) /(1 )t tu C K αβ αβ+ = − , which shows that the textbook solution tZ tαβ= ∀  

satisfies the TVC. Uniqueness of the infinitely-lived household’s decision problem implies that 

any other processes { }tZ  consistent with (2) and (3)  violates the TVC. This implies that the  

bubble equilibrium discussed above violates the TVC.9 

 This paper focuses on stationary model solutions consistent with the resource constraint 

and the Euler equation, but it disregards the TVC. The purpose of the paper is to show that 

stationary rational bubbles can exist in standard non-linear DSGE models. Note that explosive 

bubbles in linear models (Blanchard (1979)) likewise violate the TVC.  

 One possible justification for disregarding the TVC is to assume an OLG structure with 

finitely-lived households. The Appendix presents an OLG structure that has the same aggregate 

resource constraint and the same aggregate Euler equation as the Long-Plosser model. Thus 

equations (1)-(4) continue to hold in that OLG structure, but there is no TVC in the OLG 

structure. Such an OLG structure provides a motivation for exploring rational bubbles in 

standard DSGE models. The two key features of the OLG structure are: 10 (I) Efficient risk 

sharing between periods t and t+1, among all agents who are alive in both periods. (II) Newborn 

agents receive a wealth endowment such that consumption by newborns represents a time-

                                                 
9 Under the bubble process (9), tZ  approaches 1 if a long uninterrupted string of positive draws of the sunspot ε  is 
realized, which entails large positive values of /(1 ).t tZ Z−  Although this only happens with a very small probability, 
it causes the TVC to be violated. 
10 Assumption I is also used by Gali (2018). Assumption II is novel (to the best of my knowledge). Assumptions I 
and II allow to derive simple non-linear dynamic relations among aggregate variables for the economy. Without 
these two assumptions, approximate aggregation across generations may be possible, based on linear 
approximations. The focus of the paper here is on stationary rational bubbles induced by non-linearity. Thus, 
aggregation based on linear approximations is not useful here. 
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invariant share of aggregate consumption;  under log utility, this requires that the wealth 

endowments of newborns is a time-invariant fraction of total wealth across all generations. 11  

Another motivation for disregarding the TVC is that detecting TVC violations may be 

very difficult, in more complicated stochastic models (than the Long-Plosser economy), for 

which no closed form solution exists (see below). TVC violations may be caused by low-

probability events in a distant future. Agents may thus lack the cognitive/computing power to 

detect deviations from TVC; see discussion in Blanchard and Watson (1982), Lansing (2010) 

and Ascari et al. (2019). 12 

 

3. Stationary rational bubbles in an RBC model with incomplete capital depreciation 

I next construct an equilibrium with stationary rational bubbles for an RBC model with 

incomplete capital depreciation and variable labor. It is now assumed that the period utility 

function is ( , ) ln( ) ln(1 ),t t t tU C L C L= +Ψ⋅ −  0,Ψ>  where 0 1tL≤ ≤  are aggregate hours worked. The 

household’s total time endowment (per period) is normalized to one, so that 1 tL−  is household 

leisure.13 The resource constraint and the production technology are  

                                              1 (1 )t t t tC K Y Kδ++ = + −  with 1( ) ( ) ,t t t tY K Lα αθ −=                                 (10) 

where 0 1δ< ≤  is the depreciation rate of capital. TFP is exogenous and follows a stationary 

Markov process. The economy has these efficiency conditions:  

                                                     /(1 ) (1 ) ( ) ( )t t t t tC L K Lα αα θ −Ψ − = −   and                                    (11) 

                                                 
11 Assume that the young can appropriate a constant share of total wealth. The wealth endowment of newborn may 
be provided by bequest, or by a government transfer financed by a (lump sum) tax levied on older generations. In 
reality, all societies make significant transfers to young generations (as bequest and through spending on their health 
and education). Wealthy countries make bigger transfers to the young than poor countries. It seems reasonable to 
assume that the wealth endowment of the young is a (roughly) constant share of total wealth.  
12 Blanchard and Watson (1982) and Ascari et al. (2019) analyze explosive bubbles in linearized models without 
TVC. Lansing (201) Lansing (2010) disregards the TVC in a non-linear Lucas-style asset pricing models with 
bubbles, arguing that “agents are forward-looking but not to the extreme degree implied by the transversality 
condition” (p.1157); Lansing documents the existence of stationary asset price bubbles, when the TVC is dropped. 
The present paper considers fully-fledged DSGE macro models with endogenous output and capital accumulation. 
The method for constructing stationary bubble equilibria here is different and more general than that proposed by 
Lansing (it can be applied to a wide range of models). 
13 Due to decreasing returns to capital and a positive capital depreciation rate, the assumed upper bound on hours 
worked implies that the support of the distribution of capital and output is bounded, in equilibrium, which greatly 
simplifies the analysis. Some widely used preference specifications (such as ( , ) ln( ) ( ) , 0, 1)t t t t tU C L C L Lμ μ= −Ψ⋅ ≥ >  
do not impose an upper bound on hours worked. Then the support of the distribution of hours, capital and output 
may be unbounded, in stationary bubble equilibria, which makes it much harder to analyze (and compute) those 
equilibria.  
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                                           1 1
1 1 1 1{ / }( ( ) ( ) 1 ) 1t t t t t tE C C K Lα αβ αθ δ− −
+ + + + + − =                                     (12) 

where (11) indicates that the household’s marginal rate of substitution between consumption and 

leisure is equated to the marginal product of labor, while (12) is the Euler equation.  

 (11) shows that hours worked tL  are a decreasing function of consumption .tC  

Maximum hours worked 1tL =  are chosen when consumption is zero. Provided date t gross 

investment 1 (1 )t t tI K Kδ+≡ − −  does not exceed maximum output (i.e. output with 1)tL =  

                                                                   ( )t t tI K αθ≤ ,                                                              (13) 

equations (10) and (11) uniquely pin down consumption and hours worked as functions of 

1, , :t t tK K θ+   

                                                  1( , , )t t t tC K Kγ θ+=  and 1( , , ).t t t tL K Kη θ+=                                      (14) 

Using these expressions to substitute out consumption and labor in the Euler equation gives:  

            1 1
1 2 1 1 1 1 2 1 1[ { ( , , )/ ( , , )}( ( ) ( ( , , )) 1 )] 1t t t t t t t t t t t tE K K K K K K Kα αβ γ θ γ θ αθ η θ δ− −
+ + + + + + + + + + − = ,           (15) 

which can be written as 

                                                   2 1 1( , , , , ) 1t t t t t tE H K K K θ θ+ + + = ,                                                 (16) 

where the function H  maps 5R+  into R. (The function ‘H’ in (16) differs from the H function used 

to denote the Euler equation (4) in Sect. 2).  

The model thus boils down to an expectational difference equation in capital. Once a 

process for capital has been found that that is consistent with (16) in all periods, one can use (14) 

to generate sequences for consumption, hours and output that are consistent with the resource 

constraint (10) and with the intra-temporal efficiency condition (11). Solving the model amounts, 

thus, to finding a stochastic process for capital that solves (16).  

The conventional no-bubbles solution that imposes a TVC can be described by a unique 

policy function 1 ( , )t t tK Kλ θ+ =   (e.g., Schmitt-Grohé and Uribe (2004)). Disregarding the TVC 

allows to generate stationary model solutions in which agents deviate from that ‘no-bubbles’ 

policy function.    

By analogy to the bubble process in the Long-Plosser model (see Sect. 2), I consider 

equilibria with the property that, in any period t, the capital stock 1tK +  takes one of two values: 

1 1 1{ , }L H
t t tK K K+ + +∈  with exogenous probabilities π  and ,π1−  respectively, with 1 ( , ) ,L

t t tK K eλ θ Δ
+ =  
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where Δ  is a constant (∆ is set to a positive value close to zero in the simulations reported 

below). Whether  1
L
tK +  or 1

H
tK +   is realized depends on an exogenous i.i.d. sunspot that is 

assumed independent of TFP (see below). At date t, agents anticipate that the capital stock set in 

t+1, 2tK +  likewise takes two values 2 2 2{ , }L H
t t tK K K+ + +∈  with probabilities π  and ,π1−  respectively, 

where 2 1 1( , ) .L
t t tK K eλ θ Δ
+ + +=  The Euler equation between periods t and t+1 (see (16)) can then be 

written as:  

                    1 1 1 1 2 1 1( ( , ) , , , , ) (1 ) ( , , , , ) 1H
t t t t t t t t t t t tE H K e K K H K K Kπ λ θ θ θ π θ θΔ

+ + + + + + ++ − ⋅ =                 (17) 

for 1 1 1{ , }.L H
t t tK K K+ + +∈   

Consider an economy that starts in period t=0, with an initial capital stock 0.K  Let 

{0;1}tu ∈  be an exogenous i.i.d. sunspot that takes values 0 and 1 with probabilities π and 1 ,π−  

respectively. A sequence of capital stocks 0{ }t tK ≥  such that, for all t≥0,  2 2 1( , )L
t t t tK K K eλ θ Δ
+ + += ≡  

if 1 0tu + =  and 2 2
H

t tK K+ +=  if 1 1,tu + =  where 2
H
tK +  solves (17), is a ‘bubble equilibrium’.  

1K  (the capital stock set in period 0) is not pinned down by the conditions of the bubble 

equilibrium. Henceforth, I set 1 0 1( , )K K eλ θ Δ= . (The effect of 0K and 1K on endogenous variables 

in later periods vanishes as time progresses, due to the stationarity of the process).  

Note that the trajectory of the capital stock is determined sequentially: Given 0 1,K K  the 

Euler equation (17) for period t=0 pins down 2 .HK  2
LK  is determined by 2 1 1( , )LK K eλ θ Δ= . In t=1, 

the random sunspot 1u  determines whether 2K  equals 2
LK  or 2 .HK  Given 1 2,K K  the Euler 

equation (18) for period t=1 determines 3
HK , while 3

LK  is determined by 3 2 2( , ) .LK K eλ θ Δ=  Etc in 

all subsequent periods. Note that although 2tK +  is only realized in t+1, agents know already at 

date t that 2tK +  will equal 2
L
tK +  or 2

H
tK + . In period t+1, agents are free to select a value of 2tK +  

that differs from 2
L
tK +  or 2

H
tK + , but they chose not to do so, in equilibrium, because a choice 

2 2 2{ , }L H
t t tK K K+ + +∈  is validated by their expectations about 3 3 3{ , }.L H

t t tK K K+ + +∈  
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3.1. Economy with constant TFP 

To build intuition, consider first a model variant with constant TFP ,t tθ θ= ∀  so that the sunspot 

is the only source of fluctuations. In the constant TFP economy, I write the no-bubbles policy 

rule for capital as 1 ( )t tK Kλ+ = , and the Euler equation (16) as 2 1( , , ) 1.t t t tE H K K K+ + =   

In a deterministic economy, any deviation from the no-bubbles policy function puts the 

economy on a trajectory that converges to a zero-consumption and/or zero-capital corner (e.g., 

Blanchard and Fischer (1989)). The present paper shows that there exist stationary stochastic 

bubble equilibria that do not converge to zero consumption/capital. With constant TFP, the Euler 

equation (17) between periods t and t+1 becomes:  

                                     1 1 2 1( ( ) , , ) (1 ) ( , , ) 1H
t t t t t tH K e K K H K K Kπ λ πΔ
+ + + ++ − ⋅ = .                           (18) 

This equation determines 2
H
tK +  as a function of  tK  and 1.tK +   

As discussed in the Appendix, 0Δ>  is needed to generate stationary bubbles. When 0Δ=  

then bubbles are self-ending.14 0Δ<  implies that the capital stock can be put on a downward 

trajectory that leads to a zero capital corner. Throughout the subsequent analysis, I will thus 

assume 0.Δ>  As discussed in the Appendix, 0Δ>  implies that 1 1
L H
t tK K+ +<  holds, i.e. we can 

interpret 0tu =  and 1tu =  as investment ‘bust’ and ‘boom’ states, respectively, while π  represents 

the ‘bust’ probability.  

Let maxK  be the maximum feasible constant capital stock, max max max( ) (1 ) ,K K Kαθ δ= + −  

and let minKΔ  be the steady state capital stock that would hold if 1 ( )t tK K eλ Δ
+ =  held each period: 

min min( ) .K K eλ Δ
Δ Δ=  Clearly, min maxK KΔ <  (for values of ∆ close to zero). If the initial capital stock is 

in the range min max
0 ( , ),K K KΔ∈  then the capital stock stays in that range, in all subsequent periods, 

when 0Δ≥  is assumed. An uninterrupted infinite sequence of investment booms (driven by an 

uninterrupted string of u=1 sunspot realizations) would asymptotically drive the capital to the 

upper bound maxK . An uninterrupted infinite sequence of investment busts (i.e. a string of u=0 

                                                 
14 Let ∆=0. Consider a situation with 0,tu =  so that 1 1 ( ).L

tt tK K Kλ+ += ≡ Then (18) is solved by 

12 ),( ( ) (t t
H
tK K Kλ λ λ ++ ≡ = because 1( ( ( )), ( ), ) 1.t t tH K K Kλ λ λ+ = Thus, 1 1 1 ( )L H

v v vK K K Kνλ+ + += = ≡  holds .tν∀ >  Thus, if 

1tK +  equals the value defined by the no-bubbles decision rule, then the agent has to continue sticking to the no-
bubbles decision rule in all subsequent periods, and thus the trajectory of the capital stock becomes deterministic.  
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realizations) would asymptotically drive the capital stock to lower bound min.K  Of course, such 

infinite boom or bust runs have zero probability.  

 

3.2. Economy with stochastic TFP 

In the economy with a stochastic TFP process, the capital stock picked in a ‘bust’ sunspot state at 

date t+1 (if 1 0tu + = ) is: 2 1 1( , )L
t t tK K eλ θ Δ
+ + += . Thus, 2

L
tK +  depends on 1.tθ +  I assume that, 

conditional on the inherited capital stock 1tK + , an unanticipated productivity shock at t+1 has the 

same proportionate effect on 2
L
tK +  and 2.

H
tK +  Specifically: 2 2

H H L
t t tK s K+ += ⋅ , where 0H

ts ≥  is in the 

date t information set. Across possible realizations of 1tθ + , the sunspot ‘boom’ capital stock set at 

t+1 is, thus proportional to the ‘bust’ capital stock. This greatly simplifies the analysis. 

Substituting the above formulae for 2
L
tK +  and  2

H
tK +  into the Euler equation (17) gives:  

         1 1 1 1 1 1 1 1( ( , ) , , , , ) (1 ) ( ( , ) , , , , ) 1H
t t t t t t t t t t t t t tE H K e K K H s K e K Kπ λ θ θ θ π λ θ θ θΔ Δ

+ + + + + + + ++ − ⋅ ⋅ = .       (19) 

In the economy with stochastic TFP, the task of computing a bubble equilibrium thus boils down 

to determining, in each period t, the scalar H
ts  that solves the Euler equation (19) between t and 

t+1. As in the case with constant TFP, we have to set ∆>0 to ensure existence of a stationary 

bubble equilibrium.  

 Simulations of the RBC model with stochastic TFP discussed below assume an AR(1) 

process for TFP:  1 1ln( ) ln( ) , 0 1,t t t
θθ ρ θ ε ρ+ += + ≤ <  where 1t

θε +  is a white noise with standard 

deviation 0.θσ >  To simplify computations, it is assumed that 1t
θε +  only takes 2 values  with 

equal probability: 1 { , }.t
θ

θ θε σ σ+ ∈ −   

 

3.3. Simulation results 

I set 1/3, 0.99.α β= =  The capital depreciation rate is set at 0.025.δ =  The preference parameter 

Ψ  (utility weight on leisure) is set so that the Frisch labor supply elasticity is unity, at the steady 

state.15 In model variants with stochastic TFP, I set the autocorrelation of TFP at 0.979,ρ=  

                                                 
15 (11) implies that the Frisch labor supply elasticity (LSE) with respect to the real wage rate (marginal product of 
labor) is (1 )/LSE L L= −  at the steady state, where L are steady state hours worked. Ψ  is set such that L=0.5, which 
implies LSE=1.  
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while the standard deviation of TFP innovations is set at 0.0072.θσ =  Parameters in this range are 

conventional in quarterly macro models (King and Rebelo, 1999). The no-sunspot policy rule for 

capital, 1( , ),t tKλ θ+  is approximated using a second-order Taylor expansion.  

 Table 2 reports simulated business cycle statistics for several model variants. Standard 

deviations (in %) of GDP (Y), consumption (C), investment (I) and hours worked (L) are 

reported, as well as cross-correlations with GDP, autocorrelations and mean values of these 

variables. The statistics are based on a simulation run of T=10000 periods.16 The reported 

standard deviations and correlations are medians moments computed across rolling windows of 

200 periods.17 By contrast, mean values (of Y,C,I,L) are computed for the whole simulation run 

(T periods) and expressed as % deviations from the deterministic steady state. The Table also 

reports the sample mean of the difference between capital income and investment spending 

(where this difference is normalized by GDP), as well as fraction of the T periods in which this 

difference is positive.   

 

3.3.1. Model versions with just bubble shocks 

Cols. (1)-(4) of Table 2 pertain to model variants in which fluctuations are just driven by bubbles 

(constant TFP is assumed). Cols. (5)-(8) assume bubbles and stochastic TFP shocks. Cols. (9)-

(10) assume just TFP shocks, without bubbles (the no-bubbles equilibrium is computed using a 

linear model approximation). Col. (11) reports historical statistics for the US.18  Cols. labelled 

‘Unit Risk Aversion’ (or ‘Unit RA’) assume the log utility function described above. Columns 

labelled ‘High RA’ assume greater risk aversion for consumption: 

( , ) ln( ) ln(1 ),t t t tU C L C C L= − +Ψ⋅ −  where C is a constant that is set at 0.8 times steady state 

consumption. The ‘High RA’ case implies that consumption has a lower bound: .tC C≥  In the 

                                                 
16 For several of the model variants, I also considered simulation runs with T=1000000 periods. The predicted 
statistics are virtually unchanged when the much longer runs are used.  
17 For each 200-periods window of artificial data, I computed standard deviations and correlation, using logged 
series that were HP filtered on the respective window. The Table reports median values (across all windows) of 
these standard deviations and correlations. 200 periods windows of simulated series are used as the historical 
business cycle statistics reported in Col. 11 of Table 2 pertain to an empirical sample of 200 quarters (see below). 
18 Historical standard deviations and correlations (HP filtered logged quarterly series) are taken from King and 
Rebelo (1999) and pertain to the period 1947Q1-1996Q4. Statistics for capital income minus investment were 
computed using annual data (1929-1985) reported in Abel et al. (1989).  
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‘High RA’ case, the coefficient of relative risk aversion is 5, in steady state; risk aversion is 

higher for consumption levels below steady state consumption.  

All numerical simulations in Table 2 assume ∆=0.001. That value generates standard 

deviations of real activity that are roughly in line with empirical statistics (higher values of ∆ 

induce greater volatility and a greater unconditional mean of real activity variables).  Cols. (1), 

(3), (5) and (7) assume a bust probability π=0.5, while Cols, (2),(4),(6) and (8) assume π=0.2.   

Simulated paths of GDP (continuous black line), consumption (red dashed line), 

investment ( blue dash-dotted line) and hours worked (blue dotted line) are shown in Figure 3. 

Panel (i) (i=1,..,10) of the Figure assumes the model variant considered in Col. (i) of Table 2. 

GDP, C and I series shown in Fig. 2 are normalized by steady state GDP; hours worked are 

normalized by steady state hours.   

Cols. (1) of Table 2 assumes unit risk aversion and a bust probability π=0.5. Constant 

TFP is postulated, so that economic fluctuations are purely driven by the bubble shocks. The 

predicted standard deviations of output, consumption, investment and hours are 0.49%, 1.08%, 

4.29% and 0.74%, respectively. The model-predicted output volatility is about 1/3 of the 

empirical GDP volatility. Consistent with the data, investment is predicted to me more volatile 

than output. However, the model predicts that consumption is more volatile than output, which is 

counterfactual. As in other models driven by investment shocks, the model here predicts that 

consumption is negatively correlated with output; however, the model predicts that investment 

and hours worked are strongly procyclical, as is consistent with the data. In the model, output, 

consumption, investment and hours worked are serially correlated, but the predicted 

autocorrelations (about 0.35) are smaller than the empirical autocorrelations (about 0.85).  

As pointed out above, the bubble equilibrium implies capital over-accumulation 

(compared to a no-bubbles equilibrium), i.e. the economy is ‘dynamically inefficient’ (the TVC 

is violated).  Abel et al. (1989) propose an empirical method for assessing dynamic efficiency. 

Their key insight is that an economy is dynamically efficient if income accruing to capital (i.e. 

output minus the wage bill) exceeds investment. Table 2 shows that, for all variants of the 

bubbles model here, the average (capital income – investment)/GDP ratio is positive and large 

(the average ratio is only slightly smaller than the value of that ratio in steady state, 9.59%).19 In 

                                                 
19 The steady state (capital income – investment)/GDP ratio is αr/(δ+r) where r=(1-β)/β is the steady state interest 
rate  
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fact, capital income also exceeds investment in close to 100% of all periods. This highlights the 

difficulty of detecting dynamic inefficiency (as discussed above).   

Panel (1) of Figure 3 shows that the bubble equilibrium, with unit risk aversion and 

π=0.5, generates output, labor hours and investment booms that are relatively infrequent and 

short-lived. Periods of high investment are also periods of low consumption: in the model, a 

sudden fall in consumption triggers a rise in labor hours and output. However, in most periods, 

real activity remains close to (but slightly above) its steady state level. This explains the low 

predicted autocorrelation of real activity.  

A lower bust probability π generates bigger and more persistent ‘spikes’ in real activity, 

and thus real activity becomes more volatile and more serially correlated. This is illustrated in 

Col. (2) of Table 2, where unit risk aversion and π=0.2 are assumed (see also Panel (2) of Figure 

3). However, output, consumption, investment and hours worked are now excessively volatile, 

when compared to the data. Consumption, again, is predicted to be more volatile than output.  

Model variants with the ‘high risk aversion (RA)’ utility function (that assumes a lower 

bound for consumption 0)tC C≥ >  generates less consumption volatility—those variants capture 

the fact that consumption is less volatile than output; see Cols. (3) and (4) of Table 2 (and Panels 

(3) and (4) of Fig. 3), where π=0.5 and π=0.2 are assumed, respectively.  

In summary, the model versions with just bubbles shocks considered so far can generate 

realistic volatility of real activity and of aggregate demand components. Real activity in the 

model is serially correlated, but less than in the historical data.  

Setting the bust probability at even lower values (e.g., π=0.05) generates higher, realistic 

serial correlation in real activity but the predicted volatility or real activity becomes too large. A 

lower labor supply elasticity and higher consumption risk aversion are then needed to produce 

realistic volatilities (results available on request).    

 

3.3.2. Model versions with TFP shocks 

The no-bubbles model driven by stochastic TFP shocks underpredicts the volatility of real 

activity, but it captures the fact that consumption is less volatile than output, while investment is 

more volatile (see Cols. (9),(10)).  In the no-bubbles model version, consumption and investment 

are pro-cyclical; furthermore, real activity is highly serially correlated, which reflects the high 

assumed autocorrelation (0.979) of TFP.   



20 
 

 The bubble equilibrium with TFP shocks generates fluctuations in real activity that are 

more volatile than the fluctuations exhibited by the no-bubbles equilibrium (see Fig. 3, Cols. (5)-

(8)). In this sense, the bubble equilibrium (with TFP shocks) is closer to the historical data.  

 Panels (5)-(10) show that the effect of bubbles on the simulated series is clearly 

noticeable (compared to the ‘no-bubbles’ series with just TFP shocks): the bubbles induce rapid, 

but short-lived increases in investment, hours worked and output.  

  

4. Two country model 

[TBA] 

 

5. New Keynesian model 

[TBA] 

 

6. Conclusion 

Linearized Dynamic Stochastic General Equilibrium (DSGE) models with a unique stable 

solution are the workhorses of modern macroeconomics. This paper shows that stationary 

sunspot equilibria exist in standard non-linear DSGE models, even when the linearized versions 

of those models have unique solutions. In the sunspot equilibria considered here, the economy 

may temporarily diverge from the no-sunspots allocation, before abruptly reverting towards that 

allocation. In contrast to rational bubbles in linear models (Blanchard (1979)), the bubbles 

considered here are stationary--their expected path does not explode to infinity.  The quantitative 

results presented in this paper suggest that simple non-linear DSGE models driven just by 

stationary bubbles can capture key business cycle stylized facts. 
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Appendix 1: OLG model with same aggregate Euler equation as a model with 
an infinitely-lived representative agent 
This Appendix shows that an economy inhabited by overlapping generations (OLG) of finitely-

lived agents can have the same aggregate equations—with the exception of the transversality 

condition (TVC)--as an economy with an infinitely lived representative agent. Here, this point is 

made for the Long-Plosser model discussed in Sect.2. It is assumed that the economy has the 

same aggregate production function and the same aggregate resource constraint as the 

corresponding representative agent economy.  

The two key assumptions that deliver this result are: I. Efficient risk sharing between 

periods t and t+1, among all agents who are alive in both periods. II. Newborn agents receive a 

wealth endowment such that consumption by newborns represents a time-invariant share of 

aggregate consumption. Under log utility, this requires that newborn agents receive a wealth 

endowment that is a time-invariant share of total wealth.  

Assume that agents live N<∞ periods. A measure 1 of agents is born each period. Thus, a  

fraction 1/N of the population is aged n=1,…,N. All members of the same age cohort are 

identical. All agents have log utility and the same subjective discount factor, .β  Let ,i tc  denote 

the date t consumption of agents who are in the i-th period of their life (‘generation i’) at date t. 

The expected life-time utility of the generation born at date t is, thus, 
1

,0
ln( ).N s

t i s t ss
E cβ−

+ +=∑  

Aggregate consumption at date t is ,1
.N

i titC c
=

=∑  Assume that there exists a market at date t in 

which a complete set of one-period claims with state-continent date t+1 payouts is traded. This 

implies that, in equilibrium, the consumption growth rate between t and t+1 is equated across all 

agents who are alive in both periods (risk sharing):   

                                     1, 1 , 2, 1 1,/ /i t i t t tc c c c+ + +=  for i=1,..,N-1.                                              (A.1) 

Let , , /i t i t tc Cλ ≡  denote the ratio of generation i’s consumption divided by aggregate consumption, 

in period t. I refer to ,i tλ as the ‘consumption share’ of generation i, in period t. (A.1) implies  

                                               1, 1 , 2, 1 1,/ /i t i t t tλ λ λ λ+ + +=  for i=1,..,N-1.                                              (A.2) 
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(A.2) and the adding up constraint , 11
1N

i ti
λ +=

=∑  provide a system of N equations that pin down 

the date t+1 consumption shares , 1 1,..,{ }i t i Nλ + = for given date t shares , 1,..,{ } :i t i Nλ =  

1, 1 , 1, ,(1 )/(1 )i t i t t N tλ λ λ λ+ + = − −  for i=1,..,N-1.  

 Assume that the consumption share of newborn agents, during the first period of their 

life, is time-invariant: 1, 1tλ λ=  t∀ . A constant newborn consumption share can be sustained by 

allocating to newborns a suitable time-invariant wealth share (see below). When 1, 1tλ λ= , then 

(A.1) is a stable difference equation in the consumption shares, and the consumption shares of 

generations i=2,..,N converge asymptotically to a constant consumption shares iλ  (numerical 

experiments show that  convergence to the steady state shares is fast). The N steady state 

consumption shares obey 

                                            1 1(1 ) /(1 )i i Nλ λ λ λ+ = − −  for i=1,..,N-1.                                              (A.3) 

Given any newborn’s consumption share 10 1,λ< ≤ these equations  pin down unique consumption 

shares of generations i=2,..,N that are consistent with the adding up constraint 
1

1.N
ii
λ

=
=∑   The 

following discussion assumes that the consumption shares equal their steady state values, so that 

all generational consumption shares are time-invariant: 1, 1tλ λ=  , 1,.., .t i N∀ ∀ = .    

The Euler equation for capital of generation i=1,..,N-1 between periods t and t+1 is 

, 1 , 1 1,t t t K tE rρ + + =  where , 1K tr +  is the gross rate of return (between t and t+1) on capital investment, 

while , 1 , , 1/t t i t i tc cρ β+ +=  is the common intertemporal marginal rate of substitution (IMRS) of these 

generations. Full risk sharing implies that the IMRS is equated across generations i=1,..,N-1 (see 

(A.1)). Thus 

                                    1 1
, 1 , , 11 1

/N N
t t i t i ti i

c cρ β − −

+ += =
= ∑ ∑   and                                               (A.4) 

                                     , 1 , 1 1, 1 1( )/( ) [(1 )/(1 )] / .t t t N t t t N t tC c C c C Cρ β β λ λ+ + += − − = − − ⋅                             (A.5) 

The capital Euler equation can thus be expressed as 

                             1 , 1/ 1,t t t K tE C C rβ + + =  with 1(1 )/(1 ).Nβ β λ λ≡ × − −                                  (A.6)     

We thus see that, up to a rescaling of the subjective discount factor when 1 ,Nλ λ≠  this 

OLG model implies that the same ‘aggregate’ Euler equation (in terms of aggregate 
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consumption) holds as in a model with an infinitely-lived representative agent. If the initial 

wealth endowment of newborns is such  that 1 1/ ,Nλ =  then 1/i Nλ =  holds for i=1,..,N, which 

implies .β β≡  In the special case where 1 1/ ,Nλ =  the aggregate Euler equation of the OLG 

economy is thus identical to the Euler equation of an economy with an infinitely-lived agent. The 

only difference between the two economies is that the transversality condition 

1lim '( ) 0t t tE u C Kτ
τ τ τβ→∞ + + + =  does not hold in the OLG economy, as there is no infinitely-lived 

agent in the OLG economy. This OLG structure thus provides a motivation for considering a 

business cycle models that lack a TVC, but whose other equilibrium conditions (aggregate 

resource constraint, aggregate Euler equation) are identical to those of a standard business cycle 

model with an infinitely-lived representative agent.  

 

Wealth shares 

A time-invariant consumption share 1λ  of the new-born cohort is sustained by allocating to 

newborn agents a time-invariant share of the aggregate wealth of all cohorts. To see this, let ,i tω  

denote the wealth of generation i in period t. ,i tω equals the present value of generation i’s 

consumption stream: , , ,0

N i
i t t t t s i s t ss

E cω ρ−
+ + +=

= ∑ , where the stochastic discount factor ,t t sρ +  is a 

product of the one-period-ahead discount factors defined in (A.5): , 1t tρ =  and 1
, 1 , 1

s
t t s

τ
τ τ τρ ρ= −

+ = +=Π  

for s>1.  Note that , , ,/s
t t s i t i s t sc cρ β+ + +=  for 0<s≤N-i. Therefore , , 0

N i s
i t i t s

cω β−

=
= ∑  and hence 

                                     , , ,i t i i tc φ ω= ⋅  with   1(1 )/(1 )N i
iφ β β − +≡ − − for i=1,..,N.                            (A.7) 

Thus, in each period, generation i consumes a fraction iφ  of her wealth that is generation-

specific, but time invariant. In an equilibrium with time-invariant generational consumption 

shares, the period t wealth of generation i equals thus , ( / )i t i i tCω λ φ= , and the wealth share 

generation i is  

                                               , ,1 1
/ ( / )/ ( / )N N

i t s t i i s s is s
ω ω λ φ λ φ κ

= =
= ≡∑ ∑ .                                       (A.8) 

Note that this wealth share is time-invariant. Thus, an equilibrium with time-invariant 

generational consumption shares exhibits time-invariant generational wealth shares. As pointed 

out above, the consumption share of newborn generations, 1,λ  pins down uniquely the 
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consumption shares of older generations, i.e.  iλ  is a function of 1 :λ   1( ).i iλ λ=Λ   There is, 

hence, a unique mapping from 1λ  to the wealth shares of all generations (see (A.8) for definition 

of iκ ):  

                                               1 1 11
( ) ( ( )/ )/ ( ( )/ )N

i i i i s ss
κ λ λ φ λ φ

=
= Κ = Λ Λ∑ .                                    (A.9) 

If the new-born generation is allocated a wealth share 1 1 1 11
( / )/ ( ( )/ )N

s ss
κ λ φ λ φ

=
= Λ∑ , then this 

sustains an equilibrium in which the consumption share of the new-born generation is 1.λ  A 

consumption allocation in which all generations have consumption share 1/i Nλ = is sustained by 

allocating to the newborn generation a wealth share 1 1 1
(1/ )/ 1/ .N

ss
κ φ φ

=
= ∑  As an example, assume 

that life lasts 80 years, i.e. N=320 quarters, and that the quarterly subjective discount factor is 

0.99;β =  then the consumption allocation with equal consumption shares 1/ 0.3125%i Nλ = =  

requires a newborn wealth share of 1 0.4267%.κ =   

 

Appendix 2: Bubble equilibrium in RBC model with incomplete capital 
depreciation (constant TFP)  
This Appendix discusses the role of ∆ for the bubble equilibrium, in the RBC model with 

constant TFP. Recall that ∆ denotes the deviation of the capital stock selected in the bust state, 

from the no-bubbles decision rule, λ: 1 ( ) .L
t tK K eλ Δ
+ =   

 

Consider first a decision economy with ∆=0, so that  1 ( )t tK Kλ+ =  .t∀  Then the agent’s Euler 

equation holds between t and t+1: ( ( ( )), ( ), ) 1.t t tH K K Kλ λ λ =  If 1 ( )t tK K eλ Δ
+ =  t∀  the Euler 

equation fails to hold if 0.Δ≠  Specifically: 

                                        ( ( ( ) ) , ( ) , ) 1t t tH K e e K e Kλ λ λΔ Δ Δ <   when 0Δ> ,                               (A.10) 

                                 while ( ( ( ) ) , ( ) , ) 1t t tH K e e K e Kλ λ λΔ Δ Δ >  when 0Δ< .                             (A.11) 

(Intuitively, 0Δ>  implies overinvestment in capital, and thus the intertemporal marginal rate of 

transformation is smaller than the intertemporal marginal rate of transformation, IMRS, which 

implies H<1; 0Δ<  implies underinvestment in capital, and thus the intertemporal marginal rate 

of transformation is greater than the IMRS and hence H>1.)  
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I now discuss bubble equilibria. Recall that the bubble equilibria considered here are such that 

the capital stock set at date t takes two possible values: 1 1 1{ , }L H
t t tK K K+ + +∈  with exogenous 

probabilities π  and ,π1−  respectively, where 1 ( ) .L
t tK K eλ Δ
+ =  I now show that a bounded 

equilibrium with recurrent bubbles exists if  0.Δ >  When 0,Δ =  the bubble equilibrium is self-

ending. When 0Δ <  the Euler equation between t and t+1 fails to have a solution for 2 ,H
tK +  for 

certain values of 1, .t tK K +  Thus, there is not bubble equilibrium if  ∆<0. 

I) Consider first a situation in which the date t+1 capital stock equals 1
L
tK + : 1t tK K eλ Δ( ) .+ =  

Then 2 ( ( ) )L
t tK K e eλ λ Δ Δ
+ =  and the Euler equation (17) between periods t and t+1 becomes: 

                    2( ( ( ) ) , ( ) , ) (1 ) ( , ( ) , ) 1H
t t t t t tH K e e K e K H K K e Kπ λ λ λ π λΔ Δ Δ Δ

++ − ⋅ = .                     (A.12)             

To establish the existence of a ‘bubble equilibrium’, one needs to show that there exists a
min max

2 ( , )H
tK K K+ Δ∈ that solves (A.12).  

 

● Consider first the case where 0.Δ=  Recall that ( ( ( )), ( ), ) 1.t t tH K K Kλ λ λ =  Thus, for ∆=0,  

the Euler equation of the bubbly economy (A.12) requires that 2( , ( ), ) 1H
t ttH K K Kλ+ =  holds. This 

implies 2 ( ( )),H
ttK Kλ λ+ =  and thus 2 2 2 1( ).H L

t t t tK K K Kλ+ + + += = =  By the same logic, 1 ( )s sK Kλ+ =  has 

to hold 1.s t∀ ≥ +  Thus, if 1 ( )s sK Kλ+ = , then the agent has to continue sticking to the no-bubbles 

decision rule in all subsequent periods. Hence, the bubble is self-ending when 0.Δ=  

 

● Consider next the case 0.Δ>  Because ( ( ( ) ) , ( ) , ) 1t t tH K e e K e Kλ λ λΔ Δ Δ <  when 0Δ> , the  Euler 

equation (A.12) can only holds when 2( , ( ) , ) 1.H
t t tH K K e Kλ Δ
+ >  Note that 2( , ( ) , ) 1H

t t tH K K e Kλ Δ
+ <  

when 2 ( ( ) ) .H
t tK K e eλ λ Δ Δ
+ =  It can be verified that 2( , ( ) , )H

t t tH K K e Kλ Δ
+  is an increasing function 

of 2
H
tK +  (as a rise in 2

H
tK +  lowers 1tC +  and raises hours worked 1tL +  which raises the marginal 

utility of consumption at t+1, and raises the marginal product of capital at t+1). Setting 2
H
tK +  

arbitrarily close to (but below) the maximum feasible value max( ( ) ) (1 ) ( )t tK e K e Kαθ λ δ λΔ Δ+ − <  

makes 1tC +  very close to zero (which implies that 1tL +  is very close to 1), which makes 
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2( , ( ) , )H
t t tH K K e Kλ Δ
+  very big. This implies that there exists a unique value of  2

H
tK +  that solves 

the Euler equation (A.12). Note that  max
2 ( ( ) ) ,( ).H

t tK K e e Kλ λ Δ Δ
+ ∈  Thus, 2 2.

L H
t tK K+ +<  When 

min max( , ),tK K KΔ∈  then min max( ) ( , )tK e K Kλ Δ
Δ∈  and min max( ( ) ) ( , )tK e e K Kλ λ Δ Δ

Δ∈  for values of 

0Δ>  sufficiently close to 0. If min max( , )tK K KΔ∈  we thus have that min max
1 2 2, , ( , ).L L H

t t tK K K K K+ + + Δ∈  

 

● Finally, consider the case 0.Δ<  It follows from (A.11) that then the  Euler equation (A.12) 

requires that 2( , ( ) , ) 1H
t t tH K K e Kλ Δ
+ <  holds. If there exists a value of 2

H
tK +  that solves (A.12), 

then that value must be smaller than  2 :L
tK +  2 2 ( ( ) )H L

t t tK K K e eλ λ Δ Δ
+ +< =  when 0Δ< .  There is no 

solution for 2
L
tK +  when ( ( ( ) ) , ( ) , ) (1 ) (0, ( ) , ) 1t t t t tH K e e K e K H K e Kπ λ λ λ π λΔ Δ Δ Δ+ − ⋅ > .  When 

0,Δ<  then a succession of positive (!) draws of the sunspot (u>0) puts the capital stock on a 

downward trajectory until (A.12) cannot be solved anymore for 2 0.H
tK + ≥   

 

II) Consider next a situation in which the date t+1 capital stock equals 1
H
tK + : 1 1

H
t tK K+ +=  

Assume ∆>0. As shown above, 1 ( )H
t tK K eλ Δ
+ ≥  holds when ∆>0.  When 1 1

H
t tK K+ +=  (which is 

triggered by a positive realization of the date t sunspot, 0)tu > , then 2 1( )L H
t tK K eλ Δ
+ +=  and the 

Euler equation between periods t and t+1 is given by: 

                               1 1 2 1( ( ) , , ) (1 ) ( , , ) 1H H H H
t t t t t tH K e K K H K K Kπ λ πΔ
+ + + ++ − ⋅ = .                             (A.13)             

1 1( ( ) , , )H H
t t tH K e K Kλ Δ
+ +  is a decreasing function of 1

H
tK +  for 1 ( ) .H

t tK K eλ Δ
+ ≥   Recall that 

( ( ( ) ) , ( ) , ) 1t t tH K e e K e Kλ λ λΔ Δ Δ <  when ∆>0. Therefore 1 1( ( ) , , ) 1H H
t t tH K e K Kλ Δ
+ + <  for any 

1 ( ) .H
t tK K eλ Δ
+ ≥  Thus 2 1( , , ) 1H H

t t tH K K K+ + > . It follows from the discussion above that 

2 1( , , )H H
t t tH K K K+ +  is increasing in 2

H
tK + and that 2 1( , , )H H

t t tH K K K+ +  can be made arbitrarily big by 

setting 2
H
tK +  close to 1 1( ) (1 ) .H H

t tK Kαθ δ+ ++ −  Thus, there exists a unique 2
H
tK +  that solves (A.13). 

Furthermore, 2 2 1( ) .H L H
t t tK K K eλ Δ
+ + +> ≡  
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Table 1. Long-Plosser model with bubbles: predicted business cycle statistics 
 
                              Standard dev. %              Corr. with Y               Autocorr.            Mean (% deviation from SS) 
 Y C I C I Y C I Y C I Z 
 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 
 
(a) Specification I:  Zt

L =αβ+∆ 
πt=0.5                  11.72 100.19 33.48 -0.42 0.62 0.62 0.47 0.62 13.49 -7.62 53.31 31.15 
πt≅1 for zt>0.36   1.33 3.51 3.82 0.77 -0.26 -0.26 -0.66 -0.26 3.27 -0.13 9.71 6.25 
 
(b) US Data (from King and Rebelo (1999)) 
 1.81 1.35 5.30 0.88 0.80 0.88 0.80 0.87  
Note: all business statistics pertain to HP-filtered logged variables.  
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Table 2. RBC model (incomplete capital deprec.) with bubbles: predicted business cycle statistics  
 

Bubbles, no TFP shocks Bubbles & TFP shocks 
  Unit Risk aversion   High RA Unit RA High RA Just TFP shocks  
 π=0.5 π=0.2 π=0.5 π=0.2 π=0.5 π=0.2 π=0.5 π=0.2 Unit RA  High RA Data 
 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)  
 

Standard deviations [in %] 
Y 0.49 1.16 0.68 1.43 1.27 1.60 0.98 1.57 1.14 0.72 1.81  
C 1.08 2.63 0.29 0.61 1.16 2.71 0.38 0.72 0.49 0.26 1.35 
I 4.29 9.38 3.22 6.51 5.38 9.85 3.86 6.72 3.33 2.20 5.30 
L 0.74 1.73 1.04 2.18 0.82 1.70 1.05 2.22 0.34 0.30 1.79 
 

Correlations with GDP 
C -0.97 -0.95 -0.99 -0.98 0.04 -0.54 0.01 -0.62 0.95 0.99 0.88 
I  0.98 0.96 0.99 0.99 0.89 0.86 0.97 0.98 0.99 0.99 0.80  
L 0.99 0.97 0.99 0.99 0.79 0.81 0.45 0.82 0.98 -0.96 0.88 
 

Autocorrelations 
Y 0.36 0.63 0.35 0.62 0.65 0.68 0.57 0.66 0.71 0.70 0.84 
C 0.33 0.60 0.35 0.62 0.43 0.62 0.53 0.65 0.76 0.72 0.80 
I 0.36 0.63 0.37 0.64 0.53 0.65 0.51 0.65 0.70 0.70 0.87 
L 0.34 0.61 0.35 0.62 0.45 0.62 0.41 0.63 0.70 0.74 0.88 
 

Means [% deviation from steady state] 
Y 1.41 2.80 1.25 2.12 1.37 2.75 1.31 2.17 0.00 0.00 -- 
C 0.73 1.39 0.33 0.55 0.68 1.34 0.33 0.55 0.00 0.00 -- 
I  3.62 7.33 4.22 7.19 3.61 7.28 4.44 7.40 0.00 0.00 -- 
L 0.36 0.74 -0.02 -0.02 0.34 0.73 0.01 -0.03 0.00 0.00 -- 
 

Mean (capital income – investment)/GDP  [in %] 
 9.12 8.75 8.93 8.54 9.16 8.78 8.92 8.53 9.58 9.58 13.42 
 

Fraction of periods with (capital income > investment)  [in %] 
 99.20 96.31 99.55 97.72 99.20 96.43 99.37 97.74 100 100 100 
Notes: Business cycle statistics reported here are based on simulations runs of T=10000 periods. 
Standard deviations, correlations of GDP and autocorrelations pertain to medians of statistics across 
rolling windows of 200 periods. These moments pertain to logged series that were HP filtered (for each 
window of 200 periods).  “Means” are sample averages over the total sample of T periods. The 
“Fraction of periods with (capital income > investment)” likewise pertains to the whole simulation run of T 
periods. Cols. (1)-(4) pertain to model variants in which fluctuations are just driven by bubbles (constant TFP). 
Cols. (5)-(8) pertain to variants with bubbles and TFP shocks.  Cols. (9)-(10) assume just TFP shocks (without 
bubbles). Col. (11) reports empirical statistics (for the US).  
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Fig.1. Long & Plosser model: investment/output ratio at t+1, 1,tZ + as a function of  tZ  for 1 { 0.5;0;0.5}tε + ∈ −
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(a) ‘Low’ and ‘High’ values of date t+1 investment/output ratio 1 1( , )L H

t tZ Z+ +  and expected value 1( )t tE Z +  shown as function of 

[ ,1).tZ αβ∈ +Δ ( ,0)tZΛ  is value of 1tZ +  without random sunspot.  Probability of ‘Low’ value 1
L
tZ + : 0.5tπ =  [ ,1)tt Z αβ∀ ∈ +Δ  

 
 
 

       
(b) Simulated series with constant probability: 0.5.tπ =           (c) Simulated series with 0.5tπ = for 0.36tZ ≤  and 1tπ  
                                                                                                       for 0.36tZ >  
 
Fig.2. Long & Plosser model with bubbles.  
Simulated series of output (Y), consumption (C) and investment are normalized by steady state output.   
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